
Finite momentum pairing instability of band insulators with multiple bands

Predrag Nikolić,1 A. A. Burkov,2 and Arun Paramekanti3
1Department of Physics, Rice University, Houston, Texas 77005, USA

2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
3Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7

�Received 14 December 2009; published 13 January 2010�

We show, based on microscopic models, that fermionic band insulators with multiple bands and strong
interband attraction are generically unstable toward nonzero momentum Cooper pairing leading to a pair
density wave �PDW� superfluid state. Our first model considers a band insulating state of fermionic atoms in
a three-dimensional cubic optical lattice. We show that this insulator is unstable toward an incommensurate
PDW in the vicinity of a Feshbach resonance. Our second model is a two-band tight-binding model relevant to
electrons in solids; we show that the insulating state of this model has a PDW instability analogous to the
exciton condensation instability in indirect band-gap semiconductors. We discuss relevant experimental signa-
tures of the PDW state.
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I. INTRODUCTION

The theme of coexisting or competing order parameters is
common to several strongly correlated systems including
high temperature cuprate1 and pnictide2 superconductors.
Most notably, several cuprate materials exhibit stripes or
checkerboard patterns of spin and charge modulations that
coexist with superconductivity.3–7 Motivated by the
observation8 of quasi-two-dimensional superconductivity co-
existing with stripe order in the layered superconductor
La1.875Ba0.125CuO4 �LBCO�, Berg et al.9 proposed, on phe-
nomenological grounds, that a distinct state of matter, named
a “pair density wave” �PDW�, is realized in this material. In
its simplest avatar, the PDW state results from condensing
singlet Cooper pairs with nonzero center-of-mass momenta
�Q and is accompanied by an induced charge density modu-
lation at momenta �2Q. It is thus similar to the Fulde-
Ferrell-Larkin-Ovchinnikov �FFLO� state of magnetized
superfluids10 except that the PDW does not require a spin
population imbalance.11 In contrast to earlier proposals for a
Cooper pair insulator12,13 in LBCO, the PDW state is a su-
persolid, in that it has coexisting superfluid and density or-
ders, which break lattice symmetries. However, it is very
different from the supersolid state proposed to exist in
4He,14,15 or the supersolids realized in simple lattice
models,16 since the superfluid order parameter in the PDW
state has no uniform Fourier component. The bosonic analog
of the PDW occurs in lattice models in which the boson
kinetic energy is “frustrated” so that bosons condense into
multiple modes with nonzero momenta.17

The main contribution of this work is to show there are
simple microscopic models of fermions, relevant to cold
atomic gases and solid state materials, which support a PDW
ground state. Our work goes beyond earlier Landau theory
descriptions and Josephson junction models of the PDW
state.9 Our first example is a one-channel model of fermionic
atoms near a Feshbach resonance18,19 confined to a cubic
optical lattice. It has been demonstrated recently20 that this
system shows a superfluid to band insulator transition21–23

when the lattice depth is varied at a commensurate density of

two atoms per lattice site. Here we show, via a more careful
study, that a PDW state is expected to intervene between the
uniform superfluid and the band insulator. Our second ex-
ample is a two-band tight-binding model where an appropri-
ate choice of local attractive interactions between the fermi-
ons leads to the PDW instability of a band insulator. We
discuss direct and indirect experimental signatures of PDW
order in these systems as well as the experimental feasibility
of achieving such states.

The key physics which leads to the emergence of the
PDW state in both these models is the presence of multiple
bands and the dominance of interband Cooper pairing. In the
cold atom model, we present arguments to show that, in con-
trast to intraband pairing, the phase space for interband pair-
ing is expanded at nonzero pairing momenta, which stabi-
lizes an incommensurate PDW state. In the two-band tight-
binding model, the reason for the occurrence of the PDW
state is that the lowest-energy momentum points in each
band differ by a nonzero wave vector Q, which leads to a
large Cooper pair susceptibility at this wavevector. For this
model, we present the mean-field phase diagram and show
that the PDW instability is closely related to the Halperin-
Rice exciton condensation instability in indirect band-gap
semiconductors,24 and some models of iron pnictides.25

II. COLD ATOMS IN AN OPTICAL LATTICE

We describe fermionic atoms with attractive interactions
in a periodic potential21–23 using the Hamiltonian ��=1�,

H =� d3r�c�
†�−

�2

2m
− � + Vr�c� − Uc↑

†c↓
†c↓c↑� . �1�

Owing to universality in the unitarity regime, this simple
theory provides a faithful description of fermionic cold at-
oms tuned near a broad Feshbach resonance.26 We will study
this model using mean-field theory which is known to be a
reasonable approximation near unitarity for the qualitative
points we wish to make. Fluctuations can be treated system-
atically using, for example, large N expansions,22,26,27 but we
will not pursue this here.
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We work with a simple cubic lattice potential,

Vr = V�cos�2�x

aL
� + cos�2�y

aL
� + cos�2�z

aL
�� , �2�

where aL is lattice spacing. The quantum numbers of single-
particle Bloch eigenstates in this potential are crystal wave
vector k= �kx ,ky ,kz� inside the first Brillouin zone �BZ�
−� /aL�kx ,ky ,kz�� /aL, and band-index n= �nx ,ny ,nz�. We
label the Bloch wave functions by �nk�r� and the correspond-
ing energies by 	nk.

Near unitarity, the cutoff-dependent contact interaction
parameter U is related to the scattering length a,

1

U
= −

m

4�a
+ �

n
� d3k

�2��3	 1

2	nk
	

V=0
. �3�

Band-index cutoff, discussed below, is implicit in Eq. �3�.
A T=0 superfluid-insulator transition for an even number

of fermions per site occurs at a critical value of the lattice
amplitude V, which is a universal function of aL /a and the
fermion density.21–23 Starting from a band insulating state,
the onset of pairing in the mean-field approximation can be
extracted from the inverse static pairing susceptibility ma-
trix,


Gq;G�q� = �
n1n2

� d3k1

�2��3

d3k2

�2��3

f��n1k1
� − f�− �n2k2

�

�n1k1
+ �n2k2

� n1k1;n2k2

Gq� n1k1;n2k2

G�q� +
�2��3

U
��q − q���GG�,

�4�

where q are first BZ wave vectors, G are reciprocal lattice
vectors, �nk=	nk−�, f��� is Fermi-Dirac distribution func-
tion and  are vertex functions,

n1k1;n2k2

Gq =� d3r�Gq
� �r��n1k1

�r��n2k2
�r� . �5�

Since crystal momentum is conserved, 
Gq;G�q�=
GG��q�
� �2��3��q−q��. We will use the plane-wave representation
for 
GG��q�, corresponding to the pair wave functions
�Gq�r�=ei�q+G�r. All eigenvalues of the matrix 
GG� are posi-
tive in the band insulating state. When the lowest eigenvalue

�q� becomes negative at some wave vector q=Q, the insu-
lating state becomes unstable to a superfluid of fermion pairs
condensing at momentum Q, which is a PDW state9 if Q
�0.

Normally one would expect the pair condensation to oc-
cur at Q=0. This is certainly true in any single-band model
of lattice fermions. However, as we demonstrate below, in-
terband pairing in multiband models can give rise to pairing
instability at a finite Q. Figure 1 shows the critical curves
�for two fermions per site at T=0� at which the lowest eigen-
value of 
�q� changes sign for a given scattering length a,
signaling an instability of the band insulator.28 Coming from
the deep lattice limit, Er /V�1, it is clear that the first insta-
bility one encounters �corresponding to the leftmost point on
each contour� occurs at nonzero momentum q=Q for a wide
range of scattering lengths. The smooth evolution of 
Q
 with

the lattice depth in the deep BCS limit indicates that the
formed PDW state is incommensurate. As the pairing inter-
actions become stronger, in the BEC regime, 
Q
 grows and
possibly eventually saturates at the BZ edge making the
PDW commensurate although we could not explore this re-
gime numerically. Notably, sometimes a superfluid at large q
�which can be imposed by a superflow� can be destabilized
by both increasing and decreasing V �e.g., dashed contour in
Fig. 1�. The latter illustrates that interband pairing is respon-
sible for superfluidity at finite q, which can be expected to
weaken with decreasing V. Without knowing the quartic
terms in the Landau theory, we cannot rule out time-reversal
symmetry breaking, but such a calculation is prohibitively
hard. We next provide simple arguments to show why our
multiband system can favor a PDW instability.

The incommensurate PDW owes its existence to phase-
space restrictions for interband pairing. Consider two bands
along some momentum direction in the first BZ, separated by
an indirect “gap” �which may be filled by other bands�. Let
us describe them using a one-dimensional toy model with
aL=1 as in Fig. 2. Since momentum is conserved only
modulo reciprocal lattice vectors G, we can rewrite the ver-
tex functions �5� as

FIG. 1. �Color online� Critical curves of the inverse Cooper pair
susceptibility 
�q�, at which its lowest eigenvalue changes sign, for
q= �q ,q ,q� in the band insulator with two atoms per site and vari-
ous scattering lengths. Bright solid line shows the PDW wave vec-
tor Q at the transition as a function of inverse lattice depth �Er

=�2 /4maL
2 is molecular recoil energy�.

(b)(a)

FIG. 2. Pairing of two fermions with crystal momenta k1 and k2.
Intraband pairing in �a� occurs when k1+k2−q=0. Interband pairing
in �b� occurs when k1+k2−q=−2� �assuming q�0�. Thick arrows
show the trajectories of k1 and k2 dictated by momentum
conservation.
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n1k1;n2k2

Gq = �
G�

An1n2

Gq �G�� � 2���k1 + k2 − q + G�� , �6�

where the coefficients An1n2

Gq �G�� depend on details of the
band-structure. All of these coefficients for any fixed
�n1 ,n2 ,G� must gradually vanish in the V→0 limit, except
one �at a particular value of G�� which approaches unity. For
example, pairing into a plane-wave superfluid at q� first BZ
is given by A11

q �G���G,0 �intraband� and A12
q �G�=A21

q �G�
��G,2� sgn�q� �interband� for small V. We simplify the follow-
ing discussion by focusing only on this pairing channel
which reduces the inverse pairing susceptibility matrix

GG��q� to a scalar 
�q�. Corrections due to condensate har-
monics at larger reciprocal lattice vectors are negligible in
the small V limit.

Using Eq. �6� we find that the main contribution to intra-
band pairing for small V at T=0 comes from


�1,1��q� � −
1

2�
� dk1dk2

��k1 + k2 − q�
�1,k1

+ �1,k2

,

which is illustrated in Fig. 2�a�. Since k1 and k2 are restricted
to the first BZ, the number of states available for intraband
pairing decreases with q. Consequently, the magnitude of

�1,1��q� decreases with q and thus purely intraband pairing
would occur at q=0. The dominant interband contribution,


�1,2��q� � −
1

2�
� dk1dk2

��k1 + k2 + 2� sgn�q� − q
�1,k1

+ �2,k2

,

illustrated in Fig. 2�b� has the opposite behavior because the
number of states available for interband pairing increases
with q. Therefore, interband processes alone would prefer
pairs to condense at a BZ edge.

It is important to note that 
�q��
q
 for q→0 due to the
boundaries of momentum integrals in all 
�n1n2��q�, as can be
seen from Fig. 2. Only for V=0 and in the tight-binding limit
do these linear contributions cancel out, leading to 
�q�
�q2. The initially negative slope of 
�q� leads to a local
minimum at q�0. The location of this minimum is deter-
mined by the relative strengths of interband and intraband
contributions, so that in principle it can be anywhere in the
BZ, making the PDW generically incommensurate.

A linear 
�q� for q→0 is incompatible with a uniform
superfluid instability. Since phase-space restrictions for pair-
ing in the presence of a periodic potential generally result in
a linear 
�q�, we argue that a PDW supersolid always pre-
empts an ordinary superfluid instability of the band insulator.
This is consistent with our numerical findings. Note that
fluctuations beyond the mean-field approximation cannot de-
stroy the PDW instability.

III. TWO-BAND TIGHT-BINDING MODEL

Let us next turn to a tight-binding model which is of
interest for fermions in deep optical lattices or for solid state
materials. We consider a multiband fermion Hamiltonian

H = − �
�i,j�n�

tn�cin�
† cjn� + H.c.� + �

in�

��n − ��cin�
† cin�

− U �
i,n1,n2,�1,�2

��n1n2
cin1↑

† cin2↓
† ����1�2

ci�2↑ci�1↓� , �7�

where the fermions have a band-index n and spin �. The
single-particle dispersion is governed by hopping amplitudes
tn and site energies �n. We include attractive band-dependent
interactions parameterized by a strength U and couplings
�n1n2

. For simplicity, we focus here on a two-dimensional
two-band model and restrict ourselves to the case where
�11=�22�cos � and �12=−�21�sin �, with 0���� /2.
With this parametrization, the overall pairing strength is con-
trolled by U, while tuning the angle � takes us from pure
intraband pairing ��=0� to pure interband pairing ��=� /2�.

Figure 3 shows the mean-field phase diagram of this
model for a specific choice of dispersion and chemical po-
tential at which the noninteracting state is a zero-filling band
insulator. We find that this band insulator can undergo con-
tinuous transitions into either a uniform superfluid or a PDW
state depending on whether intraband or interband interac-
tions dominate. To understand this phase diagram, we com-
pute the inverse Cooper pair susceptibility of the band insu-
lator,


�q� =
1

U
+

1

Ns
�

k,n,�
�n�

2 �f��n,k� − f�− ��,−k+q�
�n,k + ��,−k+q

, �8�

where �n,k=−2tn�cos kx+cos ky�+�n−� and Ns is the num-
ber of lattice sites. The PDW instability in this model arises
from the fact that the dispersion minima of the two bands
�which minimize the denominator in Eq. �8� differ in mo-
mentum by Q= �� ,��. By making a particle-hole transfor-
mation �followed by a spin rotation� of the fermions in the
lower band, it is easy to see that the interband singlet Cooper
pair maps onto an exciton. This PDW instability can thus be
recognized as the particle-particle analog of the Halperin-
Rice exciton condensation instability in indirect bandgap
semiconductors.24 The PDW state appears when strong inter-
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FIG. 3. Mean field phase diagram of the two-band tight-binding
Hamiltonian with pairing strength U and a parameter � which tunes
the interaction from pure intraband pairing ��=0� to pure interband
pairing ��=� /2� �see text for details�. We choose t1=1, t2=−1,
�1=0, �2=4, and �=−4.5. Thin �thick� lines indicate second-
�first-� order transitions.
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band interactions can overcome the insulating band gap. This
is most natural in circumstances where the band insulator
and the pairing terms derive from the same microscopic in-
teractions such as pairing induced by superexchange interac-
tions in a spin density wave state as in the cuprate and pnic-
tide superconductors. The superfluid to PDW transition is
first-order for this model and the PDW is not accompanied
by a charge modulation since Q= �� ,��. More generally,
there will be an accompanying 2Q charge modulation as well
as an intervening supersolid state.

IV. EXPERIMENTAL SIGNATURES

A direct way to probe for the PDW in solids is a spatially
resolved Josephson tunneling experiment29 designed to look
for order-parameter modulations at wave vector Q. An indi-
rect signature would be the induced charge modulation at
wave vector 2Q which one can detect via x-ray scattering.30

In cold atom systems, noise correlations between different
spin species31 can be used to directly probe nonzero momen-
tum Cooper pairs as has also been proposed for FFLO
states.32 An indirect signature would be induced density
modulations at wave vector 2Q which can be seen from the
molecular momentum distribution.

Fluctuations can reduce the PDW wave vector 
Q
 and
broaden the momentum distribution peaks �MDP� at Q. The
first effect is not appreciable for T�Eg �band gap� and a

PDW can be observed if 
Q
−1 is smaller than the trap size �or
mean-free path in the presence of disorder�, which can be
achieved by choosing a suitable scattering length �or a clean
material�. The second effect is due to the excitation of Gold-
stone modes with energies ��q� and momenta q away from
Q. Above T����0�−��Q�, where ��Q�=0, the distinct
finite-Q MDPs will merge into a broad peak at q=0, and the
PDW will revert to a uniform superfluid. For example, at the
PDW transition with two fermions per well and aL /a=
−3.33 we find Eg�6.67Er�4.8 �K and T��0.28Er
�200 nK for the circumstances in Ref. 20. In order to main-
tain phase coherence we must be at temperatures well below
the energy scale of the lowest band width, which sets the
superfluid stiffness; this leads to an estimated Tc

0�1.2 �K.
The PDW stability can also be enhanced by going to larger
filling factors. We conclude that an atomic PDW is within
experimental reach using evaporative cooling techniques to
ensure T�T� ,Tc

0.
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